
Many types of statistical models have been proposed for estimating acci-
dent risk in transport networks, ranging from basic Poisson and nega-
tive binomial models to more complicated models, such as zero-inflated
and hierarchical Bayesian models. However, little systematic effort has
been devoted to comparing the performance and practical implications
of these models and ranking criteria when they are used for identifying
hazardous locations. This research investigates the relative performance
of three alternative models: the traditional negative binomial model, the
heterogeneous negative binomial model, and the Poisson lognormal
model. In particular, this work focuses on the impact of the choice of two
alternative prior distributions (i.e., gamma versus lognormal) and the
effect of allowing variability in the dispersion parameter on the outcome
of the analysis. From each model, two alternative accident estimators
are computed by using the conditional mean under both marginal and
posterior distributions. A sample of Canadian highway–railway inter-
sections with an accident history of 5 years is used to calibrate and
evaluate the three alternative models and the two ranking criteria. It is
concluded that the choice of model assumptions and ranking criteria
can lead to considerably different lists of hazardous locations.

One of the main tasks in a program for improving safety on a trans-
port network is the identification of a list of hazardous locations
(e.g., signalized intersections, road segments, highway–railway inter-
sections) that show evidence of high accident risk. Hazardous loca-
tions, referred to as black spots or hot spots, can be defined as locations
with high accident frequency or risk when involving both frequency
and severity of the accidents. These locations are considered to be
the most suitable candidates for engineering inspections and imple-
mentation of remedial actions, such as installation of new control
devices and improvement of location geometry (1–3).

A simple approach to identifying black spots is to rank locations
according to the observed number of accidents per vehicle mile or
vehicles entered into an intersection, computed for each location
without use of data from other locations. This approach has several
shortcomings. For example, since accidents occur as rare random
events over time, this approach is quite sensitive to random variations.
Sites with a high accident frequency within one period may experi-

ence low accident frequency in following periods. This approach
does not consider that accident frequency may tend to its mean over
time—a phenomenon known as regression to the mean (4). In addi-
tion, this way of ranking locations assumes a linear relationship
between the number of accidents and traffic exposure (e.g., vehicle
miles traveled or vehicle entries in an intersection), which has been
argued in many studies to be nonlinear. Finally, relevant location
attributes related to accident occurrences are ignored (3, 4).

Instead of ranking dangerous locations by using the observed
number of accidents, there has been continuous interest in applying
different ranking criteria—posterior mean of accident frequency or
posterior expectation of ranks, for example—derived from several
random effect or Bayesian models—for example, negative binomial
(NB) and hierarchical Bayesian models (1–3).

Although the standard Poisson regression (assuming a fixed mean)
has been applied for modeling accident events, it has limitations in
the presence of overdispersion commonly observed in accident
data (5). To deal with problems of overdispersion, the Poisson gamma
or NB regression model has been widely used (6 ). An advantage of
the NB model is that it can capture the unmeasured or unobserved
heterogeneities that are due to omitted variables and intrinsic ran-
domness. Both the Poisson and the NB regression model have been
extended to deal with the excess of zeros, another possible source of
overdispersion in count data. These extensions lead to the zero inflated
Poisson (ZIP) and zero inflated negative binomial (ZINB) models,
respectively, which also have been used to identify hazardous locations
and evaluate countermeasures (7, 8). A recent review of these four
regression models is available elsewhere (9). Other mixed Poisson
models have been applied in public health and demography studies
(10–12). Among these models is the Poisson lognormal model, which
is considered in this study.

Among the ranking criteria for the identification of black spots, the
conditional mean of accident frequency obtained from the marginal
distribution of the NB regression model has been used (13, 14). Alter-
natively, several accident estimators derived from the posterior dis-
tribution by using Bayesian analysis have been more often applied for
this task. Among them are the posterior mean of accident frequency,
the potential of accident reduction, the posterior expectation of ranks,
and the probability of being the most dangerous locations (2, 3, 15).
One of the main advantages of the Bayesian analysis is that it com-
bines the information brought by the accident data with prior knowl-
edge into the posterior distribution (4, 16 ). In this work, the terms
“ranking criterion” and “accident estimator” are used indistinctively.

Whereas several alternative statistical models and ranking crite-
ria are available in the literature for identifying hazardous locations
on a transport network, there have been few systematic studies on the
comparative performance and practical implications of some model
assumptions. Many important issues remain to be addressed. What
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is the impact of the use of alternative statistical models for decision
making? How important is the assumption about the prior or random
effect distribution (e.g., gamma versus lognormal) on the output of
the analysis? How significant can be the differences between the
ranking criteria derived from marginal or posterior distributions?
Which ranking criteria are the most appropriate for the identification
of dangerous locations?

The primary goal for this research is to provide empirical evi-
dence about the effect of the use of alternative models and criteria
on the ranking of locations for safety improvement. Three alterna-
tive models—the NB model, the heterogeneous negative binomial
(HNB) model, and the Poisson lognormal model—and two ranking
criteria—marginal and posterior mean of accident frequency—are
considered in this study. A sample of highway–railway grade cross-
ings located in the Canadian railway network is used as an application
environment.

MODEL DESCRIPTION

In traffic safety studies, the standard Poisson regression model has
been applied for modeling accident data (6 ). This regression model
assumes that the number of accidents Yi occurring over a period at a
site i is independently Poisson distributed, that is,

where the set of independent observations for the n locations is
represented by the vector y = (y1, y2, . . . , yn)′ with corresponding
accident mean μ = (μ1, μ2, . . . , μn)′. This model is constrained to
the assumption E(Yi⎟ μi) = Var(Yi⎟ μi) = μi, where μi is commonly
defined as an exponential function of a vector of covariates, μi =
exp(x′i �), where x′i = (1, xi1, . . . , xik) is a vector of covariates and
� = (β0, . . . , βk) are regression parameters to be estimated from the
data. A shortcoming of this model is that the vector of covariates xi

usually does not explain completely the conditional mean because of
omitted exogenous variables or randomness (5). For example, because
of the complexity of accident events and limitations on relevant
information (driver behavior, weather conditions), it is impossible to
consider all the factors that affect accident occurrence.

To deal with the problem of overdispersion caused by unmeasured
heterogeneities, random variations in the conditional mean of the
Poisson model can be captured by introducing a random effect term
in a multiplicative way. This leads to the mixed Poisson models, such
as the Poisson gamma and Poisson lognormal models (10, 17 ).

Poisson Gamma Model

The Poisson gamma model (also called the NB model) permits the
relaxation of the assumption that the variance is equal to the mean
by introducing a gamma random effect in a multiplicative way (17 ).
Thus, instead of assuming the accident mean to be fixed as in the stan-
dard Poisson model, here it is assumed to be random and denoted by
θi. With this assumption, the Poisson gamma model can be presented
as follows (5):

exp ~ ( )�i c( ) ( )gamma ,φ φ 2

θi i b= ′( ) ( )exp exp ( )xi� � 2

Y ai i iθ θ~ ( )Poisson( ) 2

Yi i iμ μ~ ( )Poisson( ) 1
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where as before μi = exp(x′i �). This model implies that exp(�i) fol-
lows a gamma distribution with E[exp(�i)] = 1 and consequently
Var[exp(�i)] = 1/φ, which is obtained by specifying that the shape
and dispersion parameters (φ) of the gamma distribution are equal.

NB Model: Fixed Dispersion Parameter

To obtain the marginal distribution of the NB model, the random
effect, exp(�i), is integrated. The resulting marginal is equal to the
NB probability function as follows:

where φ is the dispersion parameter and usually is expressed for
computing convenience as a function of α, that is, φ = 1/α. As in the
Poisson model, μi = exp(x′i�). The conditional mean and variance of
the NB marginal distribution are given by

where NBF is the NB model with fixed φ. As shown in the following
section, the log likelihood of this model can be maximized numeri-
cally by using the Newton–Raphson algorithm to estimate the model
parameters (17 ).

HNB Model: Varying Dispersion Parameter

An alternative parameterization of the traditional NB regression
model is to allow observed variability in the dispersion parameter.
That is, the dispersion parameter φi is assumed to vary across loca-
tions as a function of covariates such as traffic conditions (2, 18 ).
This extension is used to try to structure the unmeasured hetero-
geneities. For example, two highway–railway intersections with the
same number of daily trains located in the same railway corridor
could have similar accident patterns, and thus the unmeasured hetero-
geneities associated with these intersections may be structured in the
same way. Modeling the dispersion parameter can increase flexibil-
ity and thus precision of accident estimates. The HNB model can be
defined as follows (17, 19):

where φi is a function of traffic-flow conditions or other site attributes
that modifies the magnitude of the dispersion parameter among sites.
In this study, φi is modeled by using the following link function (19):

where z′i = (zi1, . . . , zik) is a vector of covariates representing loca-
tion attributes of each location (not necessary the same as x′i ) and
� = (γ1, . . . , γk)′ is a vector of parameters. The μNBV

i parameter in
Equation 6 denotes the marginal mean of accident from the HNB
model, that is,

μ β φi i iE YNBV = ( ) = ′( ), exp ( )xi ββ 8
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Notice that Equation 8 is the same as Equation 4, except that the
regression parameters � are estimated, allowing observed variability
in φi. In road safety studies, the gamma probability density function
as a random effect or prior has been widely used. With this choice,
a close form of the marginal distribution can be obtained (i.e., NB
distribution), yielding computational simplification. However, the
gamma distribution may not necessarily be the best one for modeling
the unobserved heterogeneities in some accident data sets.

Poisson Lognormal Model

Instead of assuming a gamma distribution for the random effect
exp(�i), a more convenient probability density function can be the
lognormal. With this assumption, the Poisson lognormal model can
be defined as follows (10, 17 ):

The marginal distribution of this model does not have as close a
form as the Poisson gamma model. However, to obtain the maximum
likelihood estimates σ̂2 and β̂, we can use several methods, such as
the Gauss–Hermite quadrature or the EM algorithm (12, 17, 20).
The mean and variance of the marginal distribution of this model are
given by (21)

where LN is the Poisson lognormal model. Notice that if σ2 → 0,
E(Yi⎟ �, σ) and Var(Yi⎟ �, σ) are reduced to the mean and variance
of the Poisson model. Thus, σ can be considered the difference
between Poisson and Poisson lognormal models.

This Poisson lognormal model can be a good candidate for mod-
eling accident rates with a heavier-tailed distribution since the log-
normal tails are known to be asymptotically heavier than those of the
gamma distribution (20, 22). For instance, this model can better fit
some data than the Poisson gamma under the presence of outliers (20).
Empirical evidence and other advantages of the Poisson lognormal
model were given by Winkelmann (17 ), who compared different
models for count data analysis and found that this model better fits
a particular data set than the NB model.

Recently, hierarchical Poisson lognormal models have been applied
for modeling accident data by using Markov chain Monte Carlo
techniques for parameter estimation into the full Bayesian approach
(21, 23). In this paper, the Poisson lognormal model is applied by
using the maximum likelihood approach to estimate the prior param-
eters (12, 20). Here, the Poisson lognormal model is applied to eval-
uate the impact of the choice of the prior distribution, by comparing
this model with the Poisson gamma model.

Parameter Estimation

In the three presented models, parameters of the prior distribution as
well as the regression parameters � must be specified or estimated.

Var Y E Y E Yi i iββ ββ ββ, , , expσ σ σ σ( ) = ( ) × + ( ) × ( ) −⎡⎣ ⎤1 12
⎦⎦{ } ( )11

ˆ , exp ( )μ σ σi iYLN E= ( ) = ′ +⎡⎣ ⎤⎦ββ ββxi
1
2

2 10

exp ~ ( )�i c( ) ( )lognormal 0, 2σ 9

φi i b= ′( ) ( )exp exp ( )xi ββ � 9

Y ai i iφ φ~ ( )Poisson( ) 9
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The well-known maximum likelihood method is used here and, in the
case of random effects models (or, equivalently, Bayesian models),
the likelihood is computed as

where ρ represents the set of parameters from the prior distribution
(for example, in the NB model, ρ = φ) and where

where g(�) represents the prior distribution applied on θi. In practice,
numerical methods such as Newton–Raphson are needed to estimate
the parameters � and ρ (12, 17, 20).

ACCIDENT ESTIMATORS BASED 
ON POSTERIOR MEAN

As mentioned, to incorporate prior information and at the same time
combine specific-site attributes (i.e., accident history, traffic vol-
umes, and other location attributes), posterior distribution by using
a Bayesian approach has been widely recommended for identifying
hazardous locations (1–3, 15).

Two main approaches can be distinguished within the class of
Bayesian methods: the full Bayes approach and the empirical Bayes
(EB) approach. The main difference between these two approaches
is in the way the hyperparameters (i.e., parameters from the prior
distribution) are determined. In the full Bayes, hyperparameters are
determined on the basis of some prior belief on the behavior of the
data involved (16 ). However, including prior beliefs about data is
challenging and controversial, and this has led many researchers to
use the so-called EB approach (10, 16 ).

In the EB approach, the hyperparameters are estimated by using
the maximum likelihood technique described in the previous section
or any other techniques involving the use of the accident data. This
approach has been criticized for implicitly using the data twice. That
is, the data are first used to estimate the parameters of the prior dis-
tribution, and once these values are determined, the accident his-
tory of each location is used to make inferences about the posterior
distribution (4, 16 ).

The introduction of a multiplicative random effect, distributed
according to a known probability function, is mathematically equiv-
alent to considering that the mean of the Poisson model θi follows
a specific prior distribution. Thus, the terms “prior” and “random
effect” are used indistinctively in this paper.

Posterior Mean Under Poisson Gamma Model

Once the gamma distribution is defined as a prior distribution and yi

accidents are observed in a given location, the posterior distribution
can be derived on the basis of the Bayes theorem. With the gamma
as a prior distribution of θi, the posterior distribution of the NB
model is also gamma distributed. Thus, the posterior mean under the
NB model, denoted by μ̂EBF

i , can be written as follows (2, 4):
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where μ̂ i = exp(x′i �̂) and φ̂ are the maximum likelihood estimates
obtained from the NB marginal distribution (Equation 3). Another
parameterization of the NB model is to allow variability in φi, which
leads to the HNB model. Thus, to improve the flexibility of the
posterior mean of accident frequency, this new arrangement can be
applied by computing φi as a function of some covariates, as pre-
sented in Equation 7. To avoid confusion, the posterior mean under
the HNB model is denoted by μ̂EBV

i and computed as follows:

where it can be recalled that the magnitude of φ̂i varies from one
location to another according to site-specific attributes (zi), such
as traffic flows. Heydecker and Wu (2) and Miaou and Lord (18)
considered variability of φ̂i by using a similar parameterization.

Approximated Posterior Mean Under Poisson
Lognormal Model

For the Poisson lognormal model introduced earlier, the imple-
mentation of the EB approach is more complicated because the log-
normal is not a conjugate distribution as the gamma for the Poisson
model. Therefore, the lognormal posterior mean must be approxi-
mated (10, 11 ). The approximate posterior mean introduced by
Clayton and Kaldor (11 ) and used also by others (12) will be used
here and can be written as follows:

where μ̂EBLN
i is an approximate posterior mean of the Poisson log-

normal model and ζi = log(yi + 0.5) given that for values of yi = 0, ζi

would be undefined. Again, �̂2 and �̂ are the maximum likelihood
estimates obtained from the marginal distribution of the Poisson
lognormal model.

COMPARISON OF ALTERNATIVE ACCIDENT
ESTIMATORS: CASE STUDY

The previous section described three different models: negative bino-
mial (fixed φ), heterogeneous negative binomial (varying φi), and
Poisson lognormal models. For each model, both the conditional
mean based on a marginal distribution and the posterior mean of the
accident frequency were presented as two alternative ranking criteria
for identifying hazardous locations. Therefore, by using the marginal
distribution of each model, the following accident estimators can
be defined:

μ̂NBF
i = conditional mean of accident frequency based on the mar-

ginal distribution of the NB model (fixed φ), Equation 4;
μ̂NBV

i = conditional mean of accident frequency based on the
marginal distribution of the HNB model (varying φi),
Equation 8; and

μ̂LN
i = conditional mean of accident frequency based on the

marginal distribution of the Poisson lognormal model,
Equation 10.
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In addition, the accident estimators derived from the posterior
mean of the accident frequency are denoted by

μ̂EBF
i = posterior mean of accident frequency under the NB

model, Equation 14;
μ̂EBV

i = posterior mean of accident frequency under the HNB
model, Equation 15; and

μ̂EBLN
i = approximate posterior mean of accident frequency based

on the Poisson lognormal model, Equation 16.

The objective for this case study is to compare these alternative
accident estimators by using an accident data set obtained from a sam-
ple of highway–railway intersections as an application environment.
From this will be observed the impact that the model assumptions and
ranking criteria previously discussed can have on the identification
of hazardous locations.

Data Description

The data set used for this application combines information from
two databases provided by Transport Canada and the Canadian
Transportation Safety Board. One database consists of a crossing
inventory that contains information on approximately 29,500 grade
crossings (public and private) located nationally in Canada. The
occurrence accident database includes information of car–train acci-
dents recorded for several years. Several groups of attributes are
included in the crossing inventory: geographical location, type of
warning devices, some geometry features, and road and train traffic
volumes (14).

A sample of 5,094 highway–railway grade crossings with flash-
ing lights as main warning devices was selected. The other two main
groups in the database are crossings with reflectorized signboard
and crossings with gates. Splitting the inventory according to the
warning devices helps to avoid the problem of correlation among
crossing attributes.

For model calibration and ranking criteria comparison, the histori-
cal number of accidents from 1996 to 2000 (a 5-year period) were con-
sidered. With this consideration, effort was made to exclude significant
changes of crossing attributes over time (e.g., traffic conditions).

A brief description of the variables involved in the analysis is
presented in Table 1. As a complement, a correlation matrix was esti-
mated to identify high linear correlation among explanatory vari-
ables. A small or moderate linear association was found among
the attributes involved in the analysis (correlation coefficients less
than 0.5).

Model Calibration and Validation

Before the model calibration, the functional form of μi is specified
for the three regression models. Here, a popular functional form is
adopted (14, 18):

where

AADTi = average annual daily traffic,
Ti = number of daily trains, and
xi = other geometry attributes of each crossing i.

μ β β β βi i i i k ikx x= + ×( ) + + +[ ]exp ln0 1 2 2AADT or
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The product of AADTi and Ti is a measure of traffic exposure and was
proposed by Farr (24) and Saccomanno et al. (14 ). The functional
form given by Equation 17 allows a possible nonlinear relationship
between the accident occurrence and traffic flows. Other functional
forms have been proposed in the safety traffic literature (18). Since
there is no information on the time-of-day variations of traffic con-
ditions, it is not possible to consider a more precise measure of
exposure.

Once model parameters are estimated by using the accident his-
tory of a 5-year period, the accident estimators of each model are
computed. The statistical software packages SAS 8.2 and LIMDEP
8.0 are used for model calibration. After all possible combinations
of the crossing attributes introduced in Table 1 are tried, the most
significant set of covariates is selected for each model (Table 2). The
t-ratio test was used for the selection process, considering a confi-
dence level of 95%. The coefficients and t-ratio values of the final
regression models are given in Table 2.
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Testing Overdispersion

The next step is to verify the presence of overdispersion in the data
by testing the null hypothesis of the inverse dispersion parameter
(H0: α = 0) obtained from the NB regression model by applying the
t-ratio statistic, which is obtained by dividing the estimate α̂ by its
standard error. Note that the hypothesis α = 0 does not make sense
mathematically but reflects the case where the variance of exp(�i)
is zero, implying that it is considered as being constant. Such a case
is then equivalent to the standard Poisson model. Then, by testing
the null hypothesis H0, one is testing if there is enough evidence to
assume exp(�i) to be randomly distributed. Alternatively, over-
dispersion in the data can be identified on the basis of the likelihood
ratio (TLR), which is equal to −2 times the difference in the fitted
log likelihood of two nested models (5).

A value of α̂ = 1.385 (i.e., φ̂ = 0.722) is obtained with a standard
error of 0.337 when the NB model is applied (Table 2), which is
significantly different from zero at the 95% confidence level, con-
firming the existence of overdispersion. In addition, the presence
of overdispersion can be identified by calculating TLR with the log
likelihood values of Poisson and NB regression models. In this
case, the log likelihood values of these two models are −1292.44 
and −1273.40, respectively. From these values TLR = 38.0, which
exceeds the 1% critical value of χ2

.98(1) = 5.41. Note that the TLR

statistic approximately follows a chi-squared distribution. From
these results, overdispersion for unobserved heterogeneity is clearly
revealed.

Goodness of Fit

To test the appropriateness of the Poisson lognormal versus the
standard Poisson model, use the test statistic Vuong (V ), which is
useful for comparing nonnested regression models (25). In this test,
if⎟V⎟ is greater than 1.96 (critical value for a 95% confidence level),
it favors the selection of the Poisson lognormal model. With the
calibrated Poisson lognormal and Poisson models, the V statistic
is 2.22, which is greater than the critical value and supports the
selection of the second model.

Alternatively, one can compare the goodness of fit of nonnested
models calibrated with the same data by using the Akaike infor-
mation criterion (AIC) (5 ). This criterion is computed as AIC =
−2 log likelihood + k, where k = number of model parameters. 

TABLE 1 Crossing Characteristics and Accident History

Category Crossing Attributes Description Average or Percentage Minimum Maximum

Road features Posted road speed km per hour 63.5 10 110
Road type Collector or arterial = 1, 0 others 37%* 0 1
Surface material Asphalt = 1, 0 others 47%* 0 1

Railway features Max. train speed Miles per hour 36.6 5 95
Track number Number 1.2 1 6
Track angle Degrees 68.0 0 90

Traffic volumes AADT Average annual daily traffic 2,532.0% 10 57,000
Daily trains Trains per day 6.7 1 73
Exposure ln(AADT × daily trains) 8.2 2.3 13.7

Accident history Observed accidents Accidents per crossing 0.1 0 5
(five-year period) % of crossings with zero accidents 93.4% — —

*% of roads classified as collectors or arterials and % of asphalted roads.

TABLE 2 Parameter Values and Statistics for Each Model

Regression
Model Variable Parameter t-ratio P-value

NB Intercept −7.965 −20.303 0.000
Exposure 0.543 14.153 0.000
Max. train speed 0.011 4.068 0.000
Road type 0.372 3.303 0.001
Dispersion (α) 1.385 4.112 0.000

Log likelihood −1273.44

HNB Intercept −7.988 −21.244 0.000
Exposure 0.546 14.712 0.000
Max. train speed 0.011 4.180 0.000
Road type 0.340 2.933 0.003
Constant (γ0) 2.569 2.775 0.006
Daily trains (γ1) −0.058 −3.541 0.000

Log likelihood −1262.23

Poisson Intercept −8.496 −20.708 0.000
lognormal Exposure 0.545 14.313 0.000

Max. train speed 0.011 4.092 0.000
Road type 0.379 3.248 0.001
Dispersion (σ) 0.992 10.563 0.000

Log likelihood −1262.44
Vuong test (V) 2.22



A regression model with a low AIC is preferred. In this study, the
values of AIC for the NB, HNB, and Poisson lognormal models are
equal to 2550.9, 2528.5, and 2528.9, respectively. Thus, one can
conclude that the HNB and Poisson lognormal better fit the data than
the traditional NB regression model. Furthermore, the HNB model
and Poisson lognormal regression model have a similar quality of
goodness of fit.

Decision Implications of Alternative Models

In this section, implications are explored for using alternative mod-
els or ranking criteria presented previously, such as choice of the
random effect distribution (i.e., gamma versus lognormal), specifi-
cation of the dispersion parameter (i.e., fixed φ versus varying φi),
and the impact of using alternative estimators (i.e., marginal versus
posterior means). To achieve this objective, the differences among
accident estimators, derived from the same or different model, will be
computed on the basis of two measures named percentage deviation
and Spearman correlation coefficient.

Percentage Deviation

The percentage deviation can be applied to compare two ranking
criteria for the number of locations that are different in the two lists
of dangerous locations. For that, a sample of crossings is ranked
according to two accident estimators, resulting in two different
ranked lists of sites. Then, the number of sites selected from the top
of each list is designated as black spots (m), and the percentage of
locations that are different in both lists of hazardous sites is calculated.
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That is, the percentage deviation that results from the comparison of
two ranking criteria can be computed as

where s is the number of dangerous locations that are common in
the two compared lists and m is the total number of dangerous sites
selected from the top of a list sorted according to a given criteria
(e.g., μ̂EBF

i ). A high % deviation is obtained if two ranking criteria
generate very different lists of dangerous locations.

To compare the different ranking criteria based on percentage
deviation, first specify μ̂EBF

i as the base ranking criterion, because it
is among the most used in practice. Other optimal estimators are
compared to this criterion by using the % deviation. Figure 1 shows
the percentage deviation for different lists of black spots (m). From
this comparison, the following can be observed:

• There are important differences between the posterior mean of
the NB model (μ̂ i

EBF) and the approximated posterior mean of the
Poisson lognormal model (μ̂ i

EBLN). Between these two ranking cri-
teria, the percentage deviation varies from 10% to 30%, reaching a
maximum value when m is around 300. This result implies that the
choice of the prior distribution may lead to significantly different
lists of dangerous crossings in this particular analysis.

• The discrepancy between μ̂EBF
i and μ̂EBV

i (i.e., posterior mean of
the NB model versus posterior mean of the HNB model) is moder-
ated. The deviation varies from 10% to 15% when m is less than 400.
This means that between 85% and 90% of the black spots identified
with μ̂EBF

i are the same as the hazardous crossings identified with
μ̂EBV

i . As expected, their difference decreases as m increases.
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• Conversely, the differences between μ̂EBF
i and the conditional

mean based on the marginal distribution of each model (μ̂NBF
i , μ̂NBV

i , and
μ̂LN

i ) are fairly significant. For instance, when one selects a small
number of black spots (e.g., m < 200 dangerous crossings), the per-
centage deviation is more than 50% for the three comparisons. How-
ever, these differences fall dramatically as the list size of black spots
increases. In general, the ranks obtained with marginal means of acci-
dents are significantly different from the ranks obtained with poste-
rior means of accidents. On the other hand, the differences among the
three marginal accident estimators appear to be insignificant.

Spearman Correlation Coefficient

The Spearman correlation coefficient is a nonparametric technique
that is usually applied to evaluate the degree of linear association
between two independent variables (26 ). Here this coefficient is
used to measure the correlation between two accident estimators.
That is, the coefficient is used to measure the degree of association
between two lists of hazardous sites ordered on the basis of two
ranking criteria, and it is computed as follows:

where di is the difference between the two ranks of a specific site i
and, as defined previously, m is the number of sites to be selected as
hazardous. The value of r can vary from +1 to −1. A value close to
+1 suggests that the two ranking criteria are positively linearly
related and vice versa. The coefficient r can give some important
insights into the dimensions of the shifts in the ranking orders of two
lists of hazardous sites. Thus, combining r and percentage deviation
gives a better conclusion about the differences obtained with two
accident estimators. The coefficient r can be formally tested by using
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the statistic which has a t-distribution with 
n − 2 degrees of freedom. If⎟ t⎟ > tω/2, the null hypothesis that the cor-
relation coefficient (r) is zero, where ω is the level of significance, is
rejected.

For example, by using this correlation coefficient, one can explore
the degree of association between μ̂EBF

i and μ̂EBV
i (i.e., fixed φ ver-

sus varying φi). Also, one can see the impact of the choice of prior
(i.e., gamma versus lognormal) by estimating the degree of associ-
ation between μ̂EBF

i and  ̂μEBL
i . The results of the Spearman correlation

coefficient are presented in Figure 2 for different dimensions of m.
From Figure 2 it can be seen that the degree of correlation between

μ̂EBF
i and μ̂EBV

i is high (more than 80%) when the list size is greater
than 300 black spots. However, when the list size is less than 300 black
spots, the correlation is moderate (less than 60%). In this case, allow-
ing variability in the dispersion parameter can produce considerable
changes in the positions of the locations into a list of black spots.

In addition, the degree of association between μ̂EBF
i and μ̂EBL

i is lower
than that between μ̂EBF

i and μ̂EBV
i , especially when m is in the range of

200 to 300 sites. Thus, it can again be seen that the choice of the prior
distribution has an important effect on the ranks of the sample of
crossings used in this study.

CONCLUSIONS AND FUTURE RESEARCH

This research investigated the relative performance and decision
implications of three alternative risk models and two ranking criteria
in the context of identification of locations for safety improvements.
An accident data set of Canadian highway–railway intersections
was used to calibrate and evaluate the different models and ranking
criteria. Some of the main conclusions are summarized as follows:

• The Poisson lognormal model has been introduced as an alterna-
tive to the NB model into the context of the empirical Bayes approach.
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A comparison of these two models was done to observe the effect
that the choice of the prior distribution can have on the identification
of hazardous sites. In this case study, the choice of the prior could
lead to considerably different lists of hazardous locations.

• Allowing variability in the dispersion parameter can add flexi-
bility to the posterior mean of the NB model and thus improve both
goodness of fit and accuracy of accident estimates. In the case study,
both the Poisson lognormal model and the HNB model better fit the
data than did the traditional NB model.

• For a given model, use of the expected accident frequency under
the marginal distribution yields strikingly different lists of hazardous
locations than use of the posterior mean as ranking criterion. As
observed in previous studies, the use of the posterior distribution may
be more appropriate than the use of the marginal distribution of a
given model for the identification of dangerous sites.

Finally, it should be noted that this research represents the first step
toward the goal of developing a set of useful guidelines that can be
used by practitioners to select the most appropriate tools for identify-
ing high-risk locations. Many important issues remain to be addressed
before this goal can be achieved:

• The conclusions obtained from this study are limited to the data
set used in the analysis. Further investigations that use more data
sets from different transportation facilities are necessary to substan-
tiate the findings and generalize these preliminary conclusions. For
instance, it is possible that the choice of lognormal distribution could
be advantageous when modeling accident data sets that contain loca-
tions with a relatively high number of accidents. In such cases, the
long tail of the lognormal distribution makes it a good competitor of
the gamma distribution.

• This research covers only a limited number of ranking criteria.
Thus, it is important to investigate the impact of use of other ranking
criteria, such as posterior expectation of ranks and probability of being
the most dangerous location.

• Because of the rarity of accident events, it is difficult to know
the true value or a reliable estimate of the safety status of a given
location on the basis of limited observation history. This property
suggests that it is impossible to obtain the absolute performance of
a model based on accident history. This research has attempted to
answer only the question of the relative differences between the
alternative models and ranking criteria. Some researchers have sug-
gested using simulated data to quantify the absolute performance of
alternative models (9). This is an area for future research.

• Previous work suggests that the ranking of locations may be
sensitive to accident severity. It is also interesting to study different
accident types and various classes of accident severity.

REFERENCES

1. Persaud, B., C. Lyon, and T. Nguyen. Empirical Bayes Procedure for
Ranking Sites for Safety Investigation by Potential for Safety Improve-
ment. In Transportation Research Record: Journal of the Transporta-
tion Research Board, No. 1665, TRB, National Research Council,
Washington, D.C., 1999, pp. 7–12.

2. Heydecker, B. G., and J. Wu. Identification of Sites for Accident Remedial
Work by Bayesian Statistical Methods: An Example of Uncertain Infer-
ence. Advances in Engineering Software, Vol. 32, 2001, pp. 859–869.

8 Transportation Research Record 1908

3. Miaou, S.-P., and J. J. Song. Bayesian Ranking of Sites for Engineering
Safety Improvements: Decision Parameter, Treatability, Statistical Cri-
terion, and Cost Function. Presented at 83rd Annual Meeting of the
Transportation Research Board, Washington, D.C., 2004.

4. Hauer, E. Observational Before-After Studies in Road Safety: Estimating
the Effect of Highway and Traffic Engineering Measures on Road Safety.
Elsevier Science Publishers, Amsterdam, 1997.

5. Cameron, A. C., and P. K. Trivedi. Regression Analysis of Count Data.
Cambridge University Press, Cambridge, England, 1998.

6. Miaou, S.-P. The Relationship Between Truck Accidents and Geometric
Design of Road Sections: Poisson Versus Negative Binomial Regressions.
Accident Analysis and Prevention, Vol. 26, No. 4, 1994, pp. 471–482.

7. Shankar, V., J. Milton, and F. Mannering. Modeling Accident Frequency
as Zero-Altered Probability Process: An Empirical Inquiry. Accident
Analysis and Prevention, Vol. 29, No. 6, 1997, pp. 829–837.

8. Miranda-Moreno, L. F., and L. Fu. A Comparative Study of Alternative
Risk Estimators for Ranking Highway-Rail Grade Crossings for Safety
Improvement. Presented at 13th Pan-American Conference on Traffic
and Transportation Engineering, New York, 2004.

9. Lord, D., S. P. Washington, and J. N. Ivan. Statistical Challenges with
Modeling Motor Vehicle Crashes: Understanding Implications 
of Alternative Approaches. Presented at 83rd Annual Meeting of the
Transportation Research Board, Washington, D.C., 2004.

10. Rao, J. Small Area Estimation. John Wiley and Sons, New York, 2003.
11. Clayton, D., and J. Kaldor. Empirical Bayes Estimates of Age-

Standardized Relative Risk for Use in Disease Mapping. Biometrics,
Vol. 43, No. 3, 1987, pp. 671–681.

12. Meza, J. Empirical Bayes Estimation Smoothing of Relative Risk in Dis-
ease Mapping. Journal of Statistical Planning and Inference, Vol. 112,
2003, pp. 43–62.

13. Saccomanno, F., R. Grossi, D. Greco, and A. Mehmood. Identifying
Black Spots Along Highway SS107 in Southern Italy Using Two Models.
Journal of Transportation Engineering, Nov. 2001, pp. 515–552.

14. Saccomanno, F. F., L. Fu, and L. F. Miranda-Moreno. Risk-Based Model
for Identifying Highway-Rail Grade Crossing Blackspots. In Transporta-
tion Research Record: Journal of the Transportation Research Board,
No. 1862, Transportation Research Board of the National Academies,
Washington, D.C., 2004, pp. 127–135.

15. Schluter P. J., J. J. Deely, and A. J. Nicholson. Ranking and Selecting
Motor Vehicle Accident Sites by Using a Hierarchical Bayesian Model.
The Statistician, Vol. 46, No. 3, 1997, pp. 293–316.

16. Carlin, B., and T. Louis. Bayes and Empirical Bayes Methods for Data
Analysis. Chapman and Hall, London, 2000.

17. Winkelmann, R. Econometric Analysis of Count Data. Springer-Verlag,
Berlin, 2003.

18. Miaou, S.-P., and D. Lord. Modeling Traffic Crash-Flow Relationships
for Intersections: Dispersion Parameter, Functional Form, and Bayes
Versus Empirical Bayes Methods. In Transportation Research Record:
Journal of the Transportation Research Board, No. 1840, Transporta-
tion Research Board of the National Academies, Washington, D.C.,
2003, pp. 31–40.

19. Greene, W. LIMDEP, Version 8.0. 2002. www.limdep.com.
20. Sohn, S. Y. A Comparative Study of Four Estimators for Analyzing

the Random Event Rate of the Poisson Process. Journal of Statistical
Computation and Simulation, Vol. 49, 1994, pp. 1–10.

21. Tunaru, R. Hierarchical Bayesian Models for Multiple Count Data.
Austrian Journal of Statistics, Vol. 31, No. 2–3, 2002, pp. 221–229.

22. Kaas, R., and O. Heseelager. Ordering Claim Size Distributions and
Mixed Poisson Probabilities. Insurances: Mathematics and Economics,
Vol. 17, 1995, pp. 193–201.

23. Miaou, S.-P., J. J. Song, and B. K. Mallick. Roadway Traffic Crash Map-
ping: A Space-Time Modeling Approach. Journal of Transportation and
Statistics, Vol. 6, No. 1, 2003, pp. 33–57.

24. Farr, E. Summary of the DOT-Rail-Highway Crossing Resource Allo-
cation Procedure: Revised, Federal Railway Administration, U.S.
Department of Transportation, 1987.

25. Washington, S. P., M. G. Karlaftis, and F. L. Mannering. Statistical and
Econometric Methods for Transportation Data Analysis. Chapman &
Hall/CRC, Washington, D.C., 2003.

26. Mansfield, E. Statistics for Business and Economics. Norton, New
York, 1983.

The Statistical Methodology and Statistical Computer Software in Transportation
Research Committee sponsored publication of this paper.


